Basic, Intermediate, and Advanced Techniques

COURSE DESCRIPTION

This course presents both the programming interface and the techniques that can be used to write procedures in **Python** on **Unix** / **Linux** systems.

COURSE OBJECTIVES

Each participant will be able to use **Python** techniques and commands to write scripts to perform various user and administrative tasks.

EXECUTION

Each participant will have their own functioning complete **Linux** or **Windows (virtual)** server, including the **Python** programming language environment and all lab files.

COURSE TOPICS

Programming Environment Tools (Linux)

Review of (**bash**) shell features
Key capabilities of the **vim** editor
modes
initialization file (**.vimrc**)
key mapping (usage for **Python**)

Interpreted Languages

Overview of features and benefits shell scripting awk / gawk
Perl
Ruby
tcl/Tk
Python

Basic, Intermediate, and Advanced Techniques

COURSE TOPICS

Introduction to Python Scripting

History, versions, ports **Python** capabilities

Comparison with other interpreted languages

Writing Python Scripts Layout of a Python procedure

signature
comments
module importation
column format
documentation (docstrings)

pydoc - generating man or html pages
syntax checking via pylint

Execution methods

one-liners scripts command line interaction batch file interaction

Datatypes

numeric
lists (indexed arrays and tuples)
sequences
strings
dictionaries
Defining and using objects
Operators
relational
conditional
patterns (regular expressions)
Serialization (pickle)

Basic, Intermediate, and Advanced Techniques

COURSE TOPICS

Writing Python Scripts

Python programming constructs looping statements decision statements

Python file I/O
using ARGV value(s)
using sys.stdin and fileinput.input()

Python interaction with the **Linux** system file handling functions (**os** and **os.path**) process and thread creation

Subroutines and functions

Definition and declaration
Passing arguments and calling methods
Return values

Linux usage of Python interfaces ftp telnet

An Introduction to Python Classes

OO programming defining classes initializers, constructors, and destructors instance methods properties packaging

Basic, Intermediate, and Advanced Techniques

COURSE TOPICS

Operating System Services

the **os** Module environment variables launching external programs paths, directories and filenames dates and times the **Time** module

Distributing Modules

installing packages
ways to distribute code
overview of distutils
preparing for distribution
creating a source distribution
creating built distributions
setup.py options
setup.py commands

Network Programming

sockets
socket options
client concepts
server concepts
multi-tasking network server
multi-threading network server

Multiprogramming

multi-processing (advantages / disadvantages) daemon transition (native)

POSIX threads the Python thread manager threading module

Basic, Intermediate, and Advanced Techniques

COURSE TOPICS

Database

Python cx_Oracle (database interface) connection object cursor object embedding SQL statements fetching objects

Graphical User Interface (GUI) Python Tkinter (interface to TcI/Tk)

widget access main window frame,button,menu,boxes (15 types) main event loop

Processing XML Data in Python

XML data layout
reading / parsing XML data in Python
via the DOM library
via SAX parsing
via ElementTree
writing XML data in Python

COURSE DURATION

This course normally requires **two** to **five** days, approximately 50 % lecture, and 50 % lab time (duration depends upon the topics that are covered).

COURSE PREREQUISITES

It is helpful if the participants have had some experience with an interpreted language (shell scripting, **Perl**, etc), but is not mandatory. No experience with the **Linux** system is required.