
Solaris 11 Operating Environment Courses

(Platforms: Oracle SPARC and Oracle x86 / x64 based)

Solaris 11 Operating System Essentials

COURSE DESCRIPTION

This course teaches the basic working environment of a **Solaris 11** system. It introduces commonly required operations that can be performed by entering commands interactively in a command terminal, along with functions available in the **GNOME** Desktop Environment. This course is taught for the following platforms: **Solaris 11.2 SPARC and x86 / x64 platforms.**

COURSE OBJECTIVES

Each participant will be able to use **BASH** and **Korn Shell** techniques and commands to maintain collections of files, create files using interactive editor utilities, create and execute basic command procedures, communicate with other users, and tailor the interactive environment to meet their needs. Environment control using the **GNOME** graphical utilities will also be shown.

COURSE TOPICS

Unix / Solaris Software Overview
Process Concepts
The GNOME Desktop Environment GUI

Getting Started with the Command Language

Logging Into a Solaris 11 System

- Graphically through the **GNOME**
- Non-graphically thru telnet or emulation

Shell Syntax Rules
Command Line Editing
Obtaining help using man and GNOME help
Basic Network Operations
Defining and using ssh keys

Solaris 11 Operating System Essentials

COURSE TOPICS

Managing Files

File Specification Syntax
Device Specifications
Directory Specifications
Using the GNOME Nautilus file manager
Regular Expressions and Special Characters
Unix / Solaris Commands to Manipulate Files
GNOME utilities to manipulate files
File Protection Mechanisms
Standard Permission Code Scheme
Access Control Lists (ACLs)

Creating and Editing Text Files: Part 1

Using GUI-based editors (**gedit**)

vim Editor

ex Editor (commands within vim)

Creating and Editing Text Files: Part 2

Advanced Features of the **vim** Editor abbreviations mapping keys

Improving the User Interface

Saving History Commands
Creating Command Aliases
Redirection of Input and Output
Using Hard and Symbolic Links
Process Control Commands

Shell Script Procedures

Rules for Creating Procedures
The .profile Procedures

Solaris 11 Operating System Essentials

COURSE TOPICS

Print and Batch Mechanisms

The **Ip** command and options
Using the **GNOME** print manager
The **at** command and options
The **crontab** command and options

User Level Tape Operations

tar utility syntax
tar commands for product access
Using compression/uncompression commands
compress / uncompress
gzip / gunzip

COURSE DURATION

This course normally requires **three** (3) days, approximately 50% lecture and 50% lab time.

COURSE PREREQUISITES

This course is considered to be the basic **Unix** / **Solaris 11** course. Experience with any (other) interactive system is helpful.

Solaris 11 Shell and awk Scripting

COURSE DESCRIPTION

This course teaches the **Solaris 11** professional (user, systems administrator, application/system programmer) the techniques needed to develop advanced shell and reporting type procedures under **Solaris 11**. Techniques in the major shells will be shown. **All Solaris 11** platforms support the techniques in this course.

COURSE OBJECTIVES

Each participant will be able to use **Solaris 11**, **awk**, **nawk**, **BASH** and **Korn** shell commands to maintain collections of files, control usage of shell command scripts, and generate reports using the **(n)awk** facility.

COURSE TOPICS

Basics of Shell Scripting

Types of shell scripts
driver
complex
Available shells in Solaris 11
Developing a template
Adding documentation to shell scripts

Writing Shell Scripts

BASH and Korn Shell environment variables
User-defined variables
Substitution of variables
Command substitution in variables
Decision statements
Looping statement constructs
typesetting variables for output
typesetting integer and floating point variables

Solaris 11 Shell and awk Scripting

COURSE TOPICS

Writing Shell Scripts (continued)

the **select** construct (for menus) using and defining functions accessing files' records using pipes handling signals with **trap** defining and using indexed arrays

Writing Advanced (Korn) Shell Scripts

defining and using active variables nameref variables (references) defining and using associative arrays accessing files' records directly with exec special parameter/variable substitutions parent / co-process communications adding option processing in shell scripts accessing socket level TCP/IP connections

Using the awk Utility to Generate Reports

awk utility calling techniques
Patterns and actions
Using the BEGIN and END patterns
Using awk built-in variables
Procedure-defined variables in awk
Formatted output using printf

COURSE DURATION

This course normally requires **three** (3) days, approximately 50 % lecture, and 50 % lab time.

COURSE PREREQUISITES

This is an advanced **Solaris 11** course. It is assumed that participants either have attended the **Solaris 11 Operating System Essentials** course, or have equivalent experience with a **Solaris 11** system.

Advanced Solaris 11 Systems Programming

Course Description

This course introduces the participants to system level programming in the **C language** in a **Solaris 11** environment. The course focuses on **Unix** system calls and library functions, how to use them, and their underlying mechanisms. The course deals with many facets of the Unix operating system, including: introduction to UNIX kernel structure, I/O, Signals, Signal handlers, Timers, Processes, Multi-Tasking, Inter-Process Communication (IPC) Pipes, Shared memory, Message Queues, Semaphores, Networking, Sockets, using TCP/IP and UDP/IP.Throughout the course the information presented is related to the participant through: the execution of common **Solaris 11** user/administrator commands, and writing, compiling, and executing example **C language** programs which demonstrate the use of system routines and accessing system data structures on a live **Solaris 11.2** system.

Course Objectives

Upon completion of this course the participant will be able to:

- Explain the various mechanisms available to the programmer in a **Solaris 11** environment
- Write a wide variety of applications using standard **Unix** system calls and library functions

Course Topics

System Programming Environment of the Solaris 11 Operating Environment

Environment of a **C** language program System level programming requirements:

C compiler issues
Header files and libraries
Special data types used
Useful functions

Error handling (basic)

Documentation Security Issues

File Systems

Types of file I/O
File I/O structures
File I/O access types
Dealing with STDIN, STDOUT, STDERR
Creating and using temporary files
Directory file access and manipulation
Permissions

Process Creation and Control

Attributes (username, UID, PID, Groups)
Creation methods
Multi-tasking
Shells
Synchronization
An introduction to threads

Advanced Solaris 11 Systems Programming

Course Topics

Synchronization and System Information

Time issues:

how time is maintained

timers

General synchronization

semaphores

mutexes

signals (generation and handling)

System information:

uname

hostname

load averages

Interprocess Data Communication Facilities

Overview of Unix IPC Facilities

Memory Mapped files

Pipes and Named Pipes

Messages Queues

Creating and Using Shared Memory structures

Programming the **Solaris 11** contract data system

Sharing Code Between Processes

Building shared object (libraries)

Static Linking

Dynamic Linking

Networking

Concepts and basic requirements

Socket creation and usage

TCP/IP level connections

UDP/IP level connections

Course Duration

This course normally requires five (5) days, 60% lecture, 40% hands on lab exercises.

Course Prerequisites

It is assumed that the participant has a solid background in basic **Unix** utilities and editors (such as **vi**), and a working knowledge of the **C** (or **C++**) programming language(s). The material in this course applies to all major **Unix** variants (**Oracle Solaris, HP-UX, IBM AIX, and all Linux types**). Environmental or execution differences will be shown when applicable.

Essential Operations

COURSE DESCRIPTION

This course will teach the commands and methods needed to setup and manage a **Solaris 11** system. The course will also use a problem solving approach in the lab exercises to teach system administrators advanced topics, for long-term management of the system.

Systems: thru Solaris 11.0 thru 11.2 SPARC and x86/x64 platforms.

COURSE OBJECTIVES

On completion of this course, a systems administrator should be able to install, update, and boot the **Solaris 11** operating system; set up user accounts and directories; prepare queues for use; perform backups for integrity and performance reasons; monitor the system for performance and do basic setup of network software and capabilities.

COURSE TOPICS

Advanced System Concepts for System Administrators

Process concepts
Shell command usage and review
Optimizing system help information
System administrator functions
Using the **root** account (role)
Introduction to Role Based Access Control (RBAC)
Using the **GNOME** administrative graphical interfaces
Manipulating system default environment files

System Installation and Updating

Installation types and methods
Installing the **Solaris 11** operating system
Maintaining the system via **SRU**s
Adding additional products to the system (packages)
Reconfiguring the **Solaris 11** kernel via parameters (**mdb**)

Essential Operations

COURSE TOPICS

Startup and Shutdown

Components involved in the **Solaris 11** boot **GRUB** loader stages and configuration Manipulating **EEPROM** commands and parameters Default bootstrap Boot to single-user mode Solaris fail-safe boot features **SMF** startup methods, tools, and procedures Understanding **milestones** Adding procedures to the startup mechanisms Shutdown methods and control

Managing of System Users

UID and GID concepts
Creation of a user account
Security through password aging
 password lifetime and composition
 using password history and dictionaries
Controlling access by groups
Login sequence
Setting up user environment files
Using and maintaining user login files
Viewing and controlling running processes

Basic setup and control of the **GNOME**gdm-binary (login manager)
.gnome* files and directories (menus and layouts)

Remote graphical environments vncserver / vncviewer /etc/X11/qdm/qdm.conf

Essential Operations

COURSE TOPICS

Managing Disk and Backup Volumes

Commands to manipulate **ufs** disks/filesystems partitioning disk surfaces with **format** creating **ufs** file systems (**newfs**) manipulating file system structures verifying file system structures with **fsck** making file systems available to software (**mount**)

Creating and using **zfs** file systems Commands to manipulate archival volumes:

tar utility

ufsdump and ufsrestore utilities

ufs snapshots

zfs snapshots

zfs send and receive utilities

Monitoring System Activity

Informational Utilities

The **vmstat** utility

The **iostat** utility

The sar utility

The **netstat** utility

Maintaining swap and paging space(s)

Building and using the top facility

An Introduction to kstat and DTrace

Introduction to Solaris 11 Virtualization

Zones concepts

Configuring and ins

Configuring and installing a zone

Basic zone administration

Essential Operations

COURSE TOPICS

Network Setup and Configuration (via NWAM)

TCP/IP address selection
Host names and related files
Configuring network devices
Network testing with ping
Network utilities: telnet, rlogin, rcp, rsh, ssh
Controlling network services via SMF (inetadm)

Maintaining System Integrity

Login and user accounting Command/process level accounting Using **cron** tables Managing core and crash dump files

COURSE DURATION

This course normally requires five (5) days, approximately 60% lecture, and 40% lab time.

COURSE PREREQUISITES

It is assumed that the participant has successfully completed the **Solaris 11 Operating System Essentials** course, or has equivalent system time as a user.

Advanced Operations

COURSE DESCRIPTION

The Oracle Solaris 11 (Advanced) System Administration course introduces participants to: virtualization (zones), configuring access to networked directories and file systems (NFS), dynamic system tracing for system analysis (DTrace), core dump analysis, an introduction to the usage of access control lists (ACL) and the implementation of privileges in Solaris 11. In many areas of discussion, emphasis will be placed on writing tools for monitoring and/or access. These tools will include Korn shell scripts, Perl procedures, and C language programs.

Systems: Oracle Solaris 11, SPARC or x86/x64 hardware platforms.

COURSE OBJECTIVES

On completion of this course, a system administrator should be able to:

- configure and setup NFS server and client systems
- create and control virtualization features (zones)
- configure a basic Automated Installer (Al) server
- use both file and directory ACLs
- distinguish between privilege and non-privilege aware programs
- control privileges at the executable and user process levels

COURSE TOPICS

Advanced Solaris 11 Installation Setup - part 1
IPS (Image Packaging Service) setups
local and remote
multiple boot environments
Updating Solaris 11 via SRUs

Advanced Operations

COURSE TOPICS

Advanced Solaris 11 Installation Setup - part 2

Configuring **Solaris 11** installation methods text installer

Automated Installer (AI)

default

basic manifest customization installadm service setup multiple boot environments

Virtualization in Solaris 11

virtualization types
hardware based
software based
benefits of software virtualization
overview of **Solaris 11** implementation (**zones**)

Features of Solaris Zones

types (whole root) and templates creation and usage of control daemons networking capabilities operating states the global zone branded zones

Initial Operations on Solaris Zones

configuring zones (features)
booting zones
installing zones (identification and attributes)
using the zone virtual console
zone shutdown
zone deletion

Advanced Operations

COURSE TOPICS

Administrative Operations on Solaris Zones

package management patch control, addition, removal **Solaris 11** update considerations with active zones renaming, moving, cloning, migrating zones backup and recovery mechanisms

Storage Access in Solaris Zones

accessing **UFS** data sharing **zpool/zfs** global zone data **NFS** client/server capabilities

Security Features in Solaris 11

File and Directory (**ZFS**) **ACL**s
Using Role Based Access Control (**RBAC**)
Principle of Least Privilege
Assigning privileges to users and programs
Using **Extended Policy** privilege assignment

Advanced Networking Features

NFS client and server setup
automounter setup and configuration
DNS client setup
LDAP client setup
Introduction to LDAP structure and server
Configuring local and remote syslog
Configuring link failover via IPMP
Link aggregation

Advanced Operations

COURSE TOPICS

Managing the Service Management Facility (SMF)

Implement a plan to configure services
Generating manifests with svcbundle
Configure SMF services
Recover a service from a snapshot
Troubleshoot SMF services

COURSE DURATION

This course normally requires **four** (4) **days**, approximately 60% lecture, and 40% lab time.

COURSE PREREQUISITES

It is assumed that the participant has successfully completed the **Oracle Solaris 11 System Administration** course, or has equivalent system time as a user, and is comfortable with basic systems administration functions.

Performance Management (Monitoring, Analysis, Modifications)

COURSE DESCRIPTION

The Solaris 11 Systems Administration: Performance Management course introduces participants to performance management principles, monitoring utilities / tools, and analysis for the Solaris 11 Operating Environment. The course includes a review of Solaris subsystems, along with the utilities provided to monitor system efficiency including sar and the *stat family of tools. This revision also presents tools new to Solaris 11, including dtrace and kstat. In each area of discussion, emphasis will be placed on writing tools for monitoring and analysis. These tools will include Korn shell scripts, Perl procedures, and C language programs.

Systems: Solaris 11, SPARC or x86/x64 hardware platforms.

COURSE OBJECTIVES

On completion of this course, a systems administrator should be able to:

- Describe performance management fundamentals
- Use the Solaris 11 OS and third-party tools to analyze performance
- Write tools in various languages
- Use Solaris 11 performance data extensions (kstat, dtrace)
- View and set kernel-based tuning parameters
- Monitor and report on process and thread activity
- Modify CPU scheduling and virtual memory operations

COURSE TOPICS

Performance Basics

Describe the principles of performance analysis
Describe the performance management process
Terms used to describe performance aspects
Factors affecting system performance
Performance metrics
Virtual system caching

Performance Management (Monitoring, Analysis, Modifications)

COURSE TOPICS

Solaris 11 Monitoring Capabilities

Monitoring tools provided with Solaris 11

*stat family of programs

sar / sadc

kstat (command, modules, libraries)

dtrace (introduction to usage)

Third party / freely available tools

SE Toolkit programs

ManageEngine

tools from OpenSolaris

User-written tools methods and rules Kernel tunables (viewing, changing)

Memory Management

Memory layout and distribution

Memory usage by the kernel

Process creation

Process virtual address space

Buffer Cache (and allocation control)

Shared Memory / Page Caching

Paging and Swapping

Monitoring Tools

CPU Management

Software priorities concepts

Impact of the nice parameter

Priority boosting

Using dispadmin to adjust CPU mechanisms

Tuning Java threaded applications

Process states

Monitoring tools

Performance Management (Monitoring, Analysis, Modifications)

COURSE TOPICS

I/O Management

Breakdown of disk I/O Measuring Disk and I/O

UFS performance

File system structure concepts

File system caching

Name Lookup Caching

Tuning the Paged Buffer Cache Size

Monitoring tools

File system performance statistics

UFS parameters to improve efficiency

Alternative write strategies to UFS buffering

ZFS performance

zpool creation considerations

ZFS file system parameters

ZFS compression performance

ZFS deduplication

Monitoring Tools

Network Management

TCP/IP Layers Socket controls Controlling network services Setting network buffer values Monitoring tools

Summaries

Memory management
CPU management
I/O management
Network management
User program management

Performance Management (Monitoring, Analysis, Modifications)

COURSE DURATION

This course normally requires **three** (3) days, approximately 60% lecture, and 40% lab time.

COURSE PREREQUISITES

It is assumed that the participant has successfully completed the **Oracle Solaris 11 System Administration** course, or has equivalent system time as a user, and is comfortable with basic systems administration functions.

Solaris 11 Dynamic Systems Analysis

Kernel Statistics Framework (KSTATs) / Dynamic Tracing (DTrace)

COURSE DESCRIPTION

The **Solaris 11 Dynamic Systems Analysis** course introduces participants to the new facilities: **DTrace** and **KSTATS**. Using these tools, a systems administrator / systems programmer / systems analyst is able to watch kernel and systems level activity as they are occurring.

Systems: Solaris 11, SPARC or x86/x64 hardware platforms.

COURSE OBJECTIVES

On completion of this course, the participant should be able to:

- Describe system troubleshooting fundamentals
- Understand the components in Dynamic Tracing (**DTrace**)
- Learn the basics of the **D** scripting language
- Write DTrace one-line and scripted procedures
- Monitor system level activity
- Look at the modules that comprise the Kernel Statics Framework
- Write C programs to access the KSTATS cells
- Build system monitors using KSTATS with shell and Perl scripts

COURSE TOPICS

Dynamic Tracing (DTrace) Architecture

DTrace Components

Providers

Probes

Functions

Built-in variables

Required privileges

Zone considerations

Solaris 11 Dynamic Systems Analysis

Kernel Statistics Framework (KSTATs) / Dynamic Tracing (DTrace)

COURSE TOPICS

DTrace Procedures

The **D** Scripting Language
Components
Techniques
Writing **D** based scripts
one - liners
programmatic

DTrace Kernel Level Tracing

Commonly traced areas system calls TCP/IP kernel variables open files
Writing D based scripts one - liners programmatic

DTrace Application Level Tracing

Commonly traced process areas system calls environment variables open files

DTrace Impact Considerations

Anonymous tracing
Speculative tracing
Performance impact of **DTrace**Use and size **DTrace** buffers

Solaris 11 Dynamic Systems Analysis

Kernel Statistics Framework (KSTATs) / Dynamic Tracing (DTrace)

COURSE TOPICS

Kernel Statistics Framework (KSTATs) Architecture

C library functions (from Sun) kstat command interface shell scripting interface Perl module interface

KSTATs Procedures

Accessing system areas

CPU

virtual memory

disk I/O

network I/O

Case Studies
DTrace
KSTATs

COURSE DURATION

This course normally requires **three** (3) days, approximately 60% lecture, and 40% lab time.

COURSE PREREQUISITES

It is assumed that the participant has successfully completed the **Oracle Solaris 11 System Administration** course, or has equivalent system time as a user, and is comfortable with basic systems administration functions and scripting, preferably with either **Korn shell**, **awk/nawk** and **Perl**.

Network Administration for the Solaris 11 Operating System

COURSE DESCRIPTION

This course provides participants with the **concepts** and **tools** needed to understand and configure selected **network server components** in the **Solaris 11** Operating System.

COURSE OBJECTIVES

On completion of this course, a systems adminstrator should be able to

COURSE TOPICS

```
Networking capabilities (overview)

Networking protocols

Transmission Control Protocol/IP (TCP/IP)

UDP

ARP
ICMP
```

Networking configuration (hardware) LANs

NIC devices

Networking utilities (hardware)

netstat
ifconfig
snoop
kstat
arp
ping

dladm

Networking configuration (automated) sysconfig NWAM

Network Administration for the Solaris 11 Operating System

COURSE TOPICS

Interface configuration via NWAM dladm

ipadm

netcfg

nscfq

configuration of NCPs **NCU** values

flows

static and **DHCP** setups

Creating virtual (VNIC) interfaces

connections to different network links usage in Solaris 11 Zones

NIC channel bonding (aggregation)

advantages and types creation (**dladm**) monitoring persistence via networking files

IP Network Multipathing (IPMP)

Features of **IP** multipathing types (probe-based / link-based) configuring IP multipathing MAC addresses (SPARC) /etc/notrouter in.multipathd daemon configuration via dladm and ipadm troubleshooting and testing IPMP

Network Administration for the Solaris 11 Operating System

COURSE TOPICS

Routing Configurations

static

/etc/networks

/etc/defaultrouter

/etc/norouter

/etc/inet/routing.conf

route command

routeadm utility

dynamic

/etc/gateways

in.routed daemon

routeadm utility

routing tables

multi-homed host setup

troubleshooting and testing routing

Configuring a DHCP server

components (dhcpmgr / dhcpconfig / pntadm)

control files and logging (dhtadm)

troubleshooting a **DHCP** server

DNS (Domain Name System)

concepts and functions

Configure **DNS** servers

Primary (files and utilities)

Secondary (files and utilities)

troubleshooting and testing DNS services

Configuring NTP (Network Time Protocol)

time management in Solaris 11

Configure an NTP server (/etc/inet/ntp.server)

Configure an NTP client (/etc/inet/ntp.client)

troubleshooting NTP

Network Administration for the Solaris 11 Operating System

COURSE TOPICS

Networking Security

inetadm default (SMF) properties
service-specific (SMF) properties
local / remote restrictions
FTP (inbound) security controls
TCP Wrappers configuration and usage
Solaris11 IP Filter Firewall
configuration (/etc/ipf/ipf.conf)
packet filtering control (/etc/ifp/pfil.ap)
control (ipf / ipfstat / ipmon)

troubleshooting and testing IP Filter Firewall

COURSE DURATION

This course normally requires **three** (3) days, approximately 60% lecture, and 40% lab time.

COURSE PREREQUISITES

It is assumed that the participant has successfully completed the **Oracle Solaris 11 System Administration** course.